Lattice segmentation and minimum Bayes risk discriminative training
نویسندگان
چکیده
Modeling approaches are presented that incorporate discriminative training procedures in segmental Minimum Bayes-Risk decoding (SMBR). SMBR is used to segment lattices produced by a general automatic speech recognition (ASR) system into sequences of separate decision problems involving small sets of confusable words. We discuss two approaches to incorporating these segmented lattices in discriminative training. We investigate the use of acoustic models specialized to discriminate between the competing words in these classes which are then applied in subsequent SMBR rescoring passes. Refinement of the search space that allows the use of specialized discriminative models is shown to be an improvement over rescoring with conventionally trained discriminative models.
منابع مشابه
Lattice segmentation and minimum Bayes risk discriminative training for large vocabulary continuous speech recognition
Lattice segmentation techniques developed for Minimum Bayes Risk decoding in large vocabulary speech recognition tasks are used to compute the statistics needed for discriminative training algorithms that estimate HMM parameters so as to reduce the overall risk over the training data. New estimation procedures are developed and evaluated for both small and large vocabulary recognition tasks, an...
متن کاملBoosting Minimum Bayes Risk Discriminative Training
A new variant of AdaBoost is applied to a Minimum Bayes Risk discriminative training procedure that directly aims at reducing Word Error Rate for Automatic Speech Recognition. Both techniques try to improve the discriminative power of a classifier and we show that can be combined together to yield even better performance on a small vocabulary continuous speech recognition task. Our results also...
متن کاملDiscriminative training for segmental minimum Bayes risk decoding
A modeling approach is presented that incorporates discriminative training procedures within segmental Minimum Bayes-Risk decoding (SMBR). SMBR is used to segment lattices produced by a general automatic speech recognition (ASR) system into sequences of separate decision problems involving small sets of confusable words. Acoustic models specialized to discriminate between the competing words in...
متن کاملRisk Based Lattice Cut Segmental Minimum Bayes-r
Minimum Bayes-Risk (MBR) speech recognizers have been shown to give improvements over the conventional maximum a-posteriori probability (MAP) decoders through N-best list rescoring and A search over word lattices. Segmental MBR (SMBR) decoders simplify the implementation of MBR recognizers by segmenting the N-best lists or lattices over which the recognition is performed. We present a lattice c...
متن کاملRisk based lattice cutting for segmental minimum Bayes-risk decoding
Minimum Bayes Risk (MBR) decoders improve upon MAP decoders by directly optimizing loss function of interest: Word Error Rate MBR decoding is expensive when the search spaces are large Segmental MBR (SMBR) decoding breaks the single utterance-level MBR decoder into a sequence of simpler search problems. – To do this, the N-best lists or lattices need to be segmented We present: A new lattice se...
متن کامل